Bayesian Estimates for Vector - Autoregressive Models

نویسندگان

  • Shawn Ni
  • Dongchu Sun
چکیده

This paper examines frequentist risks of Bayesian estimates of VAR regression coefficient and error covariance matrices under competing loss functions, under a variety of non-informative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix an asymmetric LINEX estimator does better overall than the posterior mean. For the error covariance matrix no dominating estimator emerges. We find that the choice of prior has a more significant effect on the estimates than the form of estimator. For the VAR regression coefficients, a shrinkage prior dominates a constant prior. For the error covariance matrix, Yang and Berger’s reference prior dominates the Jeffreys prior. Estimation of a VAR using U.S. macroeconomic data yields significantly different estimates under competing priors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

Using large data sets to forecast sectoral employment

We implement several Bayesian and classical models to forecast employment for eight sectors of the US economy. In addition to standard vector-autoregressive and Bayesian vector autoregressive models, we also include the information content of 143 additional monthly series in some models. Several approaches exist for incorporating information from a large number of series. We consider two approa...

متن کامل

Parameter estimation for non-Gaussian autoregressive processes

It is proposed to jointly estimate the parameters of nonGaussian autoregressive (AR) processes in a Bayesian context using the Gibbs sampler. Using the Markov chains produced by the sampler an approximation to the vector MAP estimator is implemented. The results reported here used AR(4) models driven by noise sequences where each sample is iid as a two component Gaussian sum mixture. The result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003